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Using RChip

Aloke Phatak

June 5, 2007

1 Introduction

RChip is a suite of functions for analyzing the relationship between response variables and a
set of predictors when the number of predictors far exceeds the number of observations. Such
data are commonly observed in gene expression studies, where the expression levels of tens of
thousands of genes are measured from samples taken from tens or a few hundred individuals.
Other examples include data from SNP (single nucleotide polymorphism) arrays and from
mass spectrometers. Although the functions in RChip were originally conceived for analyzing
data from bioinformatics studies, they are not of course limited to such data and can be used
in many other contexts where the ‘N < p’ problem restricts the scope of conventional model-
building and parameter estimation procedures.

Underlying many of the functions in RChip is an engine that provides the mechanism for
eliminating redundant variables in a wide variety of existing statistical models, such as gener-
alized linear models, multiclass logistic regression, and proportional hazards survival models.
This mechanism is based on the notion of model sparsity, and hence allows for sensible esti-
mation of parameters when N, the number of observations, is much less than p the number
of potential explanatory variables. Details of the basic methodology may be found in Kiiveri
(2003)1

The library contains functions for simultaneous variable selection and parameter estima-
tion in several commonly used procedures, but in this vignette, we focus on one of the most
common applications: the analysis of gene expression data where the objective is to identify
genes that discriminate between different phenotypes. We describe the use of the function HG-
multc, which fits a multiclass logistic regression model and which, at the same time, eliminates
redundant explanatory variables.

If, for example, we use the symmetric multiple logistic transformation defined by Friedman
et al., (2000)2, then the probability that a sample will be in class g is given by

pg =
exp(x′βg)

∑G
h=1 exp(x′βh)

g = 1, 2, . . . , G (1)

Here, x is a p-vector containing the measurements of expression levels for that sample, and
βg is a set of p coefficients, one for each probeset on the array, for class g. A training data
set is used to estimate the coefficients βg in a Bayesian framework, and they are obtained by
maximizing the posterior distribution of the weights given the training data. One of the key

1Kiiveri, H. (2003) A Bayesian approach to variable selection when the number of variables is very large. In
Science and Statistics: A Festschrift for Terry Speed, D. R. Goldstein (ed.), IMS Lecture Notes - Monograph Series,
Volume 40, Institute of Mathematical Statistics, Beachwood, Ohio.

2Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting.
Ann. Statist., 28 (2), 337–407.
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assumptions of the engine underlying RChip, which is embodied in the prior distributions
assigned to the vectors of coefficients β, is that most of the coefficients are zero. Hence, we
obtain very parsimonius models that include only a few genes and that are easily interpretable.

2 Using HGmultc

2.1 St. Jude’s Leukemia Data

We illustrate the use of HGmultc using the leukemia data published by Yeoh et al. (2002)3 and
available as a data package (stjudem4) from the Bioconductor repository. The data package
is also associated with macat5, a Bioconductor package containing methods for identifying
differentially expressed chromosome regions.

If you have root privileges on a Unix machine or administrator privileges on a Windows
PC, the data package can be installed by issuing the command

> install.packages(pkgs = "stjudem",

+ repos = "http://bioconductor.org/packages/1.9/data/experiment")

Alternatively, download the compressed file directly from Bioconductor, and then install it as
follows:

> install.packages(pkgs = "/PATH/TO/FILE/stjudem_1.2.0.tar.gz",

+ repos = NULL)

To load the data, issue the command

> library(stjudem)

The data package contains a single data frame called stjude, and it contains the following
elements:

> names(stjude)

[1] "geneName" "geneLocation"
[3] "chromosome" "expr"
[5] "labels" "chip"

The matrix of gene expression values is contained in the object stjude$expr. Its columns are
samples and its rows probesets, but because HGmultc requires the transpose, we construct X,
the matrix of explanatory variables, as follows:

> X <- t(stjude$expr)

> dim(X)

[1] 327 12625

Hence, the data consists of 327 arrays, each containing 12 625 probesets. For details on the pre-
processing of raw expression levels, see the original article. The arrays have been classified
into 10 disease categories, whose labels are given by

3Yeoh, E.-J., Ross, M.E., and 19 others. (2002). Classification, subtype discovery, and prediction of outcome in
pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1, 133–143.

4http://bioconductor.org/packages/1.9/data/experiment/html/stjudem.html
5http://bioconductor.org/packages/1.9/bioc/html/macat.html
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> table(stjude$labels)

BCR E2A Hyperdip Hyperdip47
15 27 64 23

Hypodip MLL Normal Pseudodip
9 20 18 29
T TEL
43 79

We can see that the dataset is somewhat unbalanced, that some classes have many more sam-
ples than others. In demonstrating the use of HGmultc below, we will exclude the classes Hy-
perdip47, Hypodip, and Pseudodip.

2.2 Running HGmultc

The function HGmultc has only two required arguments: a matrix of expression values X, where
the N rows correspond to samples or arrays, and the p columns to probesets, and an N-element
numeric vector of class labels y:

> args(HGmultc)

function (X, y, weights = rep(1, nrow(X)), sparsity.prior = "NG",
lambda = 1, bbess = 1e+07, kbess = 0, adj.prior = TRUE, control = HGcontrol())

NULL

If there are G classes, then the vector of class labels must contain the integers 1, 2, . . . , G corre-
sponding to the classes of the rows of X. If G = 2, for example, the class labels would have to
be specified as (1, 1, 1, 2, 2, 2, 2), but not as (2, 2, 2, 5, 5, 5, 5). For the leukemia data, the vector of
labels can be constructed as

> y <- rep(1:7, times = table(stjude$labels)[-c(4,

+ 5, 8)])

where the classes identified above have been removed. Consequently, we have to redefine the
matrix X to remove observations from these classes:

> Index <- rep(1:10, times = table(stjude$labels)) %in%

+ c(1:3, 6:7, 9:10)

> X <- X[Index, ]

and X now has 266 rows.
The default values of the parameters kbess and bbess work well in most circumstances, so

let’s use them here to run HGmultc:

> res.HGmultc <- HGmultc(X, y)

The result is an object of class ’HGmultc’, and it contains the following elements:

> names(res.HGmultc)

[1] "beta" "S" "P" "class"

where
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beta is a (p + 1)× G matrix of parameter estimates, most of which are zero. There is one column
per class, and its elements are the estimates of the elements of βh in eq. (1).

S is a (p + 1) × G logical matrix. Its elements are TRUE if the variable is selected, i.e., if the
corresponding estimate of βij, i = 1, 2, . . . , p, j = 1, 2, . . . , G, is non-zero.

P is an N × G matrix of fitted probabilities, p̂hj, h = 1, 2, . . . , N, j = 1, 2, . . . , G. The rows of P
sum to one, i.e., ∑G

j=1 p̂hj = 1.

class is an N × 1 vector of fitted class labels obtained by identifying the class in each row of
the matrix P that yields the larges fitted probability.

To see the which probesets have been chosen for each class, and their corresponding pa-
rameter estimates,

> VarEst <- apply(res.HGmultc$beta *

+ res.HGmultc$S, 2, function(x) {

+ x[x != 0]

+ })

> names(VarEst) <- unique(stjude$labels)[-c(4,

+ 5, 8)]

> lapply(VarEst, round, 2)

$BCR
1635_at 37600_at 39318_at

-61.32 36.29 6.07 -1.29
41872_at

11.27

$E2A
430_at

-20.27 10.76

$Hyperdip
34593_g_at 37014_at 38968_at

-1.97 -1.78 3.99 4.58

$MLL
33412_at 36638_at 38291_at

-9.34 3.68 2.28 2.54

$Normal
35939_s_at 37645_at 39878_at

6.75 -4.23 3.21 4.10
40113_at

-5.85

$T
32794_g_at 39318_at

-16.01 10.48 -2.21
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$TEL
1488_at 39389_at 41097_at

-22.15 10.76 -3.54 6.60

So, we can see that from a dataset consisting of 266 observations and 12 625 variables, HGmultc
has selected only 20 probesets that are able to distinguish between these 7 classes. The ‘plug-in’
misclassification error is given by

> Y <- as.factor(rep(names(VarEst),

+ times = table(y)))

> table(Y, res.HGmultc$class)

Y 1 2 3 4 5 6 7
BCR 15 0 0 0 0 0 0
E2A 0 27 0 0 0 0 0
Hyperdip 0 0 62 0 2 0 0
MLL 0 0 0 20 0 0 0
Normal 0 0 0 0 18 0 0
T 0 0 0 0 0 43 0
TEL 0 0 0 0 0 0 79

and though the model is very parsimonius, classification is perfect! Of course, plug-in esti-
mates tend to be optimistic, and we can obtain the cross-validated misclassification table by
using the function xvalidate, with q-fold crossvalidation. A word of caution here: depending
on the speed of the CPU and the amount of RAM, and the value of q, cross-validation can take
considerable time! To carry out ten-fold cross-validation, we issue the command

> res.xval <- xvalidate(X, y, method = HGmultc,

+ fold = 10, trace = FALSE)

and the result, res.xval, is a vector of cross-validated fitted values. The resulting misclassifi-
cation table is given by

> table(Y, res.xval)

res.xval
Y 1 2 3 4 5 6 7
BCR 9 0 3 1 2 0 0
E2A 0 27 0 0 0 0 0
Hyperdip 3 0 56 1 2 1 1
MLL 0 1 1 15 3 0 0
Normal 0 0 8 0 9 0 1
T 0 0 0 1 0 42 0
TEL 0 0 0 0 1 0 78

The cross-validated misclassification error is larger than the corresponding plug-in quantity,
but, with the exception of the classes BCR and Normal, the error is still relatively small. Note
that in the original paper, the Normal group was shown to be quite heterogeneous, so the
relatively large misclassification error is not surprising. The classification of individuals in the
BCR group might be improved by passing the argument control = HGcontrol(tolc = 1e-
04) to the function xvalidate.
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3 Visualizing the Results of HGmultc

If only relatively few variables chosen by HGmultc – unlikely when there are several classes –
then it is possible to visualize the separation of the classes by constructing pairwise plots of
the probesets that have been selected. When there are more than say 4–6 variables selected,
we can still view the separation of the classes in few dimensions by plotting the observations
in the space of the first few linear discriminant functions6. Linear discriminant functions are
linear combinations – in this case, of the variables (probesets) selected by HGmultc – that best
separate the classes.

We first extract the probesets selected by HGmultc,

> x <- X[, unlist(apply(res.HGmultc$S,

+ 2, function(x) {

+ which(x)[-1] - 1

+ }))]

and then, after running the function lda in the library MASS, save the discriminant functions
into a data frame in preparation for plotting them using lattice graphics.

> require(MASS)

[1] TRUE

> res.lda <- lda(x, y)

> z <- scale(x, scale = FALSE) %*% res.lda$scaling

> z <- as.data.frame(z)

Figure 1 below shows the results of plotting observations in the space of the first three
discriminant functions, and we can clearly see the separation of the classes.

4 A General Strategy for Running HGmultc

As we pointed out earlier the default values of the hyperparameters kbess and bbess work
well in most situations. Nevertheless, the user may wish to find ‘optimal’ values by calculating
cross-validated error rates over a grid indexed by a range of values of the hyperparameters.
Such a procedure is, not surprisingly, computationally intensive. For HGmultc, it can be carried
out as follows:

> res.array <- optim.hyperpars(X, y,

+ method = HGmultc, xvalid = TRUE,

+ fold = 10, trace = TRUE, kbess = seq(0,

+ 1, by = 0.1), bbess = 10^seq(0,

+ 7))

Here, cross-validated error rates are carried out using ten-fold cross-validation over a grid
indexed by values of kbess and bbess in the ranges (0, 0.1, . . . , 1) and (100, 101, . . . , 107), re-
spectively. The result is a list with a single component xtable, which in this instance is an
11 × 8 array or cross-validated error rates. In most circumstances, testing a range of values of
kbess is sufficient because it usually has the biggest effect on cross-validation error.

6Venables, W.N and Ripley, B.D. (2002). Modern Applied Statistics with S, 4th edition. Springer-Verlag: New York.
See Chapter 12.1
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> require(lattice)

[1] TRUE

> print(cloud(LD3 ~ LD2 * LD1, data = z,

+ groups = Y, key = list(text = list(levels(Y)),

+ points = Rows(trellis.par.get("superpose.symbol"),

+ 1:7), columns = 3)))
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Figure 1: Plot of the leukemia data in the space of the first three linear discriminant functions
derived from the probesets selected by HGmultc.
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5 Sparse Generalized Linear Models

The parameter elimination and fitting routine at the heart of HGmultc has been used to con-
struct an engine that provides the mechanism for eliminating redundant variables in a much
broader class of statistical models than multiclass logistic regression. We briefly discuss one
such function – HGglm – that makes use of the general fitting routine.

The function HGglm fits generalized linear models (GLM) with sparsity priors, and it carries
out simultaneous variable selection and parameter estimation within a wide class of models
that includes logistic regression, Poisson regression, GLMs with gamma-distributed observa-
tions, and others. More importantly, however, HGglm allows users to specify their own models.
As we shall illustrate below, the additional arguments to HGglm are derived from the specifica-
tions required to define any GLM, namely the log-likelihood and link function.

The syntax of the call to HGglm is as follows:

> res.HGglm <- HGglm(x, f, event = NULL,

+ weights = rep(1, nrow(x)), sparsity.prior = "NG",

+ bbess = 1e+07, kbess = 0, b0sc = 15,

+ scale = -1, initb = "FALSE", model = "N",

+ fvalfn = NULL, ifvalfn = NULL,

+ varfn = NULL, drfn = NULL, devfn = NULL,

+ scale.updatefn = NULL, no.prior = 1)

For a detailed explanation of all the arguments, see the help file for HGglm. In the current
implementation, the possible values of the model argument allow for a wide range of common
models. Setting model = "Own" permits users to specify their own models, and requires fur-
ther arguments to pass the model specification to the variable selection and fitting engine. To
illustrate how to do so, we will implement Poisson regression explicitly and show that it yields
similar results to the Poisson regression model that is built-in to HGglm and that can be carried
out by setting model = "P".

For n independent Poisson observations (y1, y2, . . . , yn) with E(Yi) = µi and Var(Yi) = µi,
the log likelihood can be written as

l(µ1, µ2, . . . , µn|y1, y2, . . . , yn) =
n

∑
i=1

(yi log µi − µi) (2)

and we specify the canonical link ηi = log µi with linear predictor ηi = xT
i β. Now when model

= "Own", the arguments, fvalfn, ifvalfn, varfn, drfn, devfn, and scale.updatefn must be
specified, and they are described below:

fvalfn a function of the linear predictor η which returns µ;

ifvalfn a function of the mean µ which returns η;

varfn a function of µ which returns the variance function;

drfn a function of µ which returns the value of dµ/dη;

devfn a function of µ and the data y (and possibly of the arguments weight, scale, and event)
which returns the value of the deviance; and

scale.updatefn a function of µ and the data y (and possibly of the arguments weight, scale,
and event) which returns the value of the scale parameter.
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For the Poisson distribution, there is no scale parameter, but we still need to define the function
scale.updatefn, albeit as a function that returns only a constant value. Hence, we have

> fvalfn.p <- function(eta, y, event,

+ weights, scale) {

+ exp(eta)

+ }

> ifvalfn.p <- function(mu) {

+ log(mu + 0.01)

+ }

> varfn.p <- function(mu) {

+ mu

+ }

> drfn.p <- function(mu) {

+ mu

+ }

> devfn.p <- function(mu, y, event,

+ scale, weights) {

+ sum(weights * (y * log(mu) - mu))

+ }

> scale.updatefn.p <- function(mu, y,

+ event, weights, scale) {

+ 1

+ }

Note that in order to handle zero counts, a small constant is added to mu when taking its
logarithm in the function ifvalfn.p. When defining these functions, it is important to include
an argument in the argument list of a function even when it is not used, e.g. though the
scale.updatefn returns a constant, all of the arguments – mu, y, event, etc. – must be explicitly
included in the function call in the order shown.

To try out HGglm we first generate an artificial dataset in which the matrix of explanatory
variables is of size 40× 1000 and where, in the true model, only the intercept and the coefficient
of the first explanatory variable are non-zero:

> set.seed(95873)

> X <- matrix(runif(40 * 1000, -5, 10),

+ 40, 1000)

> Beta <- c(0.1, 0.3)

> Eta <- cbind(rep(1, 40), X[, 1]) %*%

+ Beta

> Mu <- exp(Eta)

> y <- rpois(40, Mu)

> y

9



[1] 1 1 9 6 5 0 2 0 1 27 1 3 2
[14] 3 7 13 0 0 14 7 0 17 5 1 12 5
[27] 0 9 16 8 16 0 8 8 19 3 6 0 9
[40] 6

First, to fit a sparse Poisson regression to these data using the ‘built-in’ functionality of HGglm
we invoke it with the following arguments:

> res.HGglm <- HGglm(X, y, model = "P",

+ b0sc = -1)

The argument b0sc determines the length of the initial estimate of β, and when it is set to a
negative number, HGglm generates an initial value. The results object is a list containing the
following components:

> names(res.HGglm)

[1] "beta" "S" "fv" "varids"
[5] "scale" "model"

The variables that have been selected are contained in the component varids:

> res.HGglm$varids

[1] 0 1

and we can see that only the intercept and first explanatory variable have been chosen. The
estimated coefficients are given by

> round(res.HGglm$beta[res.HGglm$varids +

+ 1], 2)

[1] 0.12 0.29

For this artificial example, the agreement with the true value is pretty good!
Now to fit the same model using the auxiliary functions defined above, we invoke HGglm

as follows:

> res.HGglm.own <- HGglm(X, y, model = "Own",

+ b0sc = -1, fvalfn = fvalfn.p,

+ ifvalfn = ifvalfn.p, varfn = varfn.p,

+ drfn = drfn.p, devfn = devfn.p,

+ scale.updatefn = scale.updatefn.p)

The variables chosen and their estimated coefficients are

> res.HGglm.own$varids

[1] 0 1

> round(res.HGglm.own$beta[res.HGglm$varids +

+ 1], 2)

[1] 0.12 0.29

and we see that the results are identical to two decimal places.

10






