
Using GeneRaVE for Extremes:

An Initial Attempt

Aloke Phatak

CMIS 09/96

June 2009

Enquiries should be addressed to:

Aloke Phatak

CSIROMathematical and Information Sciences

Leeuwin Centre, 65 Brockway Rd, Floreat, WA, Australia 6014

Private Bag 5, Wembley, WA, Australia 6913

Telephone: +61 8 9333 6184

Fax: +61 8 9333 6121

Email : Aloke.Phatak@csiro.au

Distribution list

Publications O�cer (1)

Authors (1)

Copyright and Disclaimer

© 2009CSIROTo the extent permitted by law, all rights are reserved andnopart of this publication

covered by copyright may be reproduced or copied in any form or by any means except with the

written permission of CSIRO.

Important Notice

CSIRO advises that the information contained in this publication comprises general statements

based on scienti�c research. �e reader is advised and needs to be aware that such information

may be incomplete or unable to be used in any speci�c situation. No reliance or actions must

therefore be made on that information without seeking prior expert professional, scienti�c and

technical advice. To the extent permitted by law, CSIRO (including its employees and consultants)

excludes all liability to any person for any consequences, including but not limited to all losses,

damages, costs, expenses and any other compensation, arising directly or indirectly from using

this publication (in part or in whole) and any information or material contained in it.

mailto:Aloke.Phatak@csiro.au

CONTENTS

1 Purpose 2

2 GeneRaVE 2

3 RChip Library 3

4 HGengine 4

5 Generalized Extreme Value Distribution 4

6 Sparse Variable Selection for the GEV distribution 6
6.1 Modelling the Mean . 6

6.2 Modelling the Scale . 7

7 A Simple Example 8
7.1 Data . 8

7.2 Invoking RChip . 8

7.3 Modelling the Mean . 9

7.4 Modelling the Scale . 13

8 Discussion 15

A Derivatives of the GEV Log-likelihood 18
A.1 Modelling the Mean . 18

A.2 Modelling the Scale . 19

B Auxiliary R Functions for Implementing HGengine 21
B.1 Modelling the Mean . 21

B.2 Modelling the Scale . 25

1

1 PURPOSE

�is brief note summarizes some initial attempts to useGeneRaVE[1]—a rapid variable elimination

method that can be applied to a wide class of models—to select variables in a statistical model of

the extremes of a non-stationary sequence. In this statistical model, variations in the observed

process are modelled as functions of a linear predictor in either the location parameter or the

scale parameter of a generalized extreme value (GEV) distribution. Accompanying this docu-

ment is an Sweave[2] �le (InitExtremes.Rnw) that will allow the interested reader to reproduce
not only the analyses carried out below, but the entire document itself.

2 GENERAVE

GeneRaVE is actually colloquial term for a suite of functions in the R library RChip[3] for an-
alyzing the relationship between response variables and a set of predictors when the number of

predictors, p, far exceeds the number of observations, N . Such data are commonly observed in
gene expression studies, where the expression levels of tens of thousands of genes are measured

from samples taken from tens or a few hundred individuals. Although the functions in RChip
were originally conceived for analyzing data from bioinformatics studies, they are not of course

limited to such data; they can be used in many other contexts where the N < p problem restricts
the scope of conventional model-building and parameter estimation procedures.

Underlyingmany of the functions in RChip is an engine that provides themechanism for eliminat-
ing redundant variables in a wide variety of existing statistical models such as generalized linear

models, multiclass logistic regression, proportional hazards survival models, and many others.

�is mechanism is based on the notion of model sparsity, and hence allows for the sensible esti-
mation of parameters when the number of observations is much less than the number of potential

explanatory variables.

Let1 L(y∣X, β, ϕ) represent the likelihood function for a model that we would like to �t to data
consisting of an N × p matrix of values of explanatory variables X and an N × 1 vector of obser-

vations y of the response y. �e vector β is a p × 1 vector of parameters of primary interest, and
ϕ is a q × 1 vector of parameters of secondary interest that might include, for example, scale and
shape parameters.

To estimate the coe�cients β, GeneRaVE adopts a hierarchical Bayesian approach. �e prior
distribution for the elements of β is speci�ed in such away as to capture the underlying assumption
that most of the coe�cients are likely to be zero, and that speci�cation leads to a prior for each of

the coe�cients βi , i = 1, 2, . . . , p, of the form

p(βi) = [
2(0.5−k)
√

πΓ(k)
]

δK(0.5−k)(δ∣βi ∣)

(δ∣βi ∣)
(0.5−k) , δ =

√
2

b
(2.1)

1�e discussion of GeneRaVE here follows closely the exposition of Kiiveri[1].

2

where K denotes a modi�ed Bessel function of the third kind, and Γ denotes the gamma func-
tion. An expectation-maximization algorithm is used to obtain maximum a posteriori estimates
of the coe�cients βi . Algorithmic details may be found in Kiiveri[1]. GeneRaVE has two hyper-

parameters k and b (or δ) that have to be selected. Cross-validation is used to determine k and
b.

GeneRaVE can be seen as a generalization of L1-norm methods such as LASSO[4]; indeed, it
includes LASSO as a special case.

3 RCHIP LIBRARY

For many ‘standard’ models, including Gaussian linear regression and many generalized linear

models, the RChip library contains functions that can be used directly and that are easy to use.
For example, the function HGgaussian contains only two required arguments:

> args(HGgaussian)

function (x, f, weights = rep(1, nrow(x)), sparsity.prior = "NG",
bbess = 1e+07, kbess = 0, b0sc = 5, scale = -1, initb = NULL,
no.prior = 1, control = HGcontrol(eta.lim = 1e+30))

NULL

�ey are the matrixX (x) of values of the explanatory variables and the N-vector y (f) of observa-
tions of the response; the remainder of the arguments, including the hyperparameters k (kbess)
and b (bbess) have been assigned default values. Here’s a simple example, adapted from the help
�le for HGgaussian:

> X <- matrix(rnorm(100 * 200), ncol = 200)
> # Generate response using a coefficient of 2 for the first
> # explanatory variable and with an intercept of one.
> y <- 2 * X[, 1] + 1 + 0.1 * rnorm(100)
> res <- HGgaussian(X, y)
> names(res)

[1] "beta" "S" "fv" "varids" "sigma2"

�e help �le contains a description of the results object, but we can see which coe�cients have

been selected, and their corresponding values, by the following statements:

> # Variables selected (0 is the intercept term)
> res$varids

[1] 0 1

> # Values of coefficients
> res$beta[res$S]

[1] 1.008674 2.009463

3

Because the noise added in generating the vector y is small, HGgaussian easily recovers the ‘true’
model.

In addition to HGgaussian, RChip contains functions for two- and multi-class logistic regres-
sion, survival analysis, and a broad range of generalized linear models. However, in order to �t

a regression where the response has a GEV distribution, we need to use another function, one

that encodes general-purpose engine that imposes sparsity on a much broader class of statistical

models.

4 HGENGINE

In theory, HGengine, the general-purpose engine outlined in Kiiveri[1] can be used to impose the
sparsity constraint in eq. (2.1) (and other sparsity priors) on any statistical model as long as we can
write a likelihood of the form L(y∣X, β, ϕ). We need only be able to calculate the �rst and second
derivatives of the likelihood with respect to the linear predictor, ηi = x′iβ, and be able to calculate
estimates of the parameters of secondary interest, ϕ.�e arguments of HGengine are as follows:

> args(HGengine)

function (X, y, event, weights = rep(1, nrow(X)), bbess = 1e+07,
kbess = 0, scale, bhat, Le, DLde, D2Lde, HGsc, sparsity.prior = "NG",
no.prior = NULL, Offset = NULL, Offset.par.update = NULL,
a = NULL, control = HGcontrol())

NULL

Along with the matrix of explanatory variables X, response vector y, and initial estimates of β and
ϕ (bhat and scale, respectively), HGengine requires the following user-de�ned functions:

Le the value of the likelihood;

DLde the �rst derivative of the likelihood function with respect to the linear predictor ηi ;

D2Lde the second derivative of the likelihood function with respect to ηi ; and

HGsc the values of ϕ1, ϕ2, . . . , ϕq, the parameters of secondary interest.

Before illustrating how we might use HGengine, we �rst consider some aspects of the GEV distri-
bution.

5 GENERALIZED EXTREME VALUE DISTRIBUTION

Let Y1,Y2, . . . ,YN be independent random variables having a GEV distribution with common
mean µ, scale σ , and shape ξ, for which we use the notation Yt ∼ GEV(µ, σ , ξ). For example, the
sequence might represent the annual maximum sea-levels measured at a given location. �en,

4

when ξ ≠ 0, the log-likelihood can be written as[5]

l(µ, σ , ξ) = −
N

∑
i=1
log σ − (1 + 1/ξ)

N

∑
i=1
log [1 + ξ (

yi − µ
σ

)]

−
N

∑
i=1

[1 + ξ (
yi − µ

σ
)]

−1/ξ
(5.1)

provided that

1 + ξ (
yi − µ

σ
) > 0, for i = 1, 2, . . . ,N (5.2)

When eq. (5.2) is violated, the likelihood is zero, and the log-likelihood is −∞ (alternatively,

the negative log-likelihood equals +∞). Prescott and Walden[6] use an alternative formulation,

which, for common µ, σ , and shape parameter k, can be written as

l(µ, σ , k) = −
N

∑
i=1
log σ − (1 − k)

N

∑
i=1

xi −
N

∑
i=1
exp(−xi) (5.3)

where

xi = −
1

k
log [1 − k (

yi − µ
σ

)] (5.4)

and it is easy to show that k = −ξ. In the remainder of this note, we will use the formulation of
Prescott and Walden.

When Y1,Y2, . . . ,YN are independent, we can obtain estimates of the parameters of the GEV dis-

tribution by maximizing either eq. (5.1) or eq. (5.3). No analytical solution exists, but numerical

optimization methods can be used, as in, for example, the function gev.fit contained in the R
package ismev[7].

Itmay be, however, that the sequenceY1,Y2, . . . ,YN , is non-stationary, that the data do not support

amodelwhich assumes a constant distribution throughout time. For example, if annualmaximum

sea-levels appears to change linearly over time, a suitable model for Yt might then be

Yt ∼ GEV(µ(t), σ , k)

where

µ(t) = β0 + β1t

More generally, we can write

µ(t) = x′β

where the vector x = (x1, x2, . . . , xp)′ contains p covariates. Non-stationarity may also be ex-
pressed in terms of the other GEV parameters; for any of them, we can write

θ(t) = h(x′β) = h(η) (5.5)

5

where θ denotes either µ, σ , or k, though shape parameters are di�cult to estimatewith precision[5,
p. 106].�e function h is the inverse-link, and η = x′β is the linear predictor. For example, it may
be appropriate to model the scale parameter as a function of the linear predictor:

σ(t) = exp(η) (Ô⇒ log σ(t) = η)

Here, the exponential inverse-link function ensures that σ > 0 for all values of the covariates.

�e class of models implied by eq. (5.5) is similar to generalized linear models (GLMs). However,

as Coles[5, p. 108] points out, none of the standard results or computational tools are directly

transferable to the estimation for GEV-distributed variables because the GLM family is restricted

to distributions in the exponential family. Numerical methods can be used to maximize the log-

likelihood, which can be written as

l(µ(t), σ(t), k(t)) = −
N

∑
i=1
log σ(t) − (1 − k)

N

∑
i=1

xi −
N

∑
i=1
exp(−xi) (5.6)

where

xi = −
1

k(t)
log [1 − k(t)(

yi − µ(t)
σ(t)

)] (5.7)

It is unlikely that we would correctly be able to specifymodels for all three GEV parameters simul-

taneously (norwould the resultingmodel be necessarily parsimonious!), but the function gev.fit
in the package ismev allows the user to do so. It cannot, however, be used when N < p, nor does
it provide functionality for automatic variable selection. HGengine allows only one of the GEV
parameters to bemodelled, but the sparsity prior enforces automatic variable selection, evenwhen

N < p.

6 SPARSE VARIABLE SELECTION FOR THE GEV DISTRIBUTION

�e function HGengine requires (see §4) �rst (DLde) and second (D2Lde) derivatives of the (log-)
likelihood with respect to the linear predictor η, and they will depend on the parameter we choose
to model, as will the function HGsc required to calculate the values of the parameters that are not
modelled. We consider �rst a model for the mean µ and then for the scale parameter σ .

6.1 Modelling the Mean

To model the mean, we will use a simple identity link function:

µi = x′iβ = ηi , i = 1, 2, . . . ,N

Hence, the likelihood, which we denote by lµ to indicate that the mean is being modelled, is given
by

lµ = −N log σ − (1 − k)
N

∑
i=1

xi −
N

∑
i=1
exp(−xi) (6.1)

6

where

xi = −
1

k
log [1 − k (

yi − ηi

σ
)] (6.2)

It is straightforward to show (see Appendix A.1) that the �rst derivative of lµ with respect to ηi is

∂lµ
∂ηi

=
(1 − k)

σ
exp(kxi) −

1

σ
exp [(k − 1)xi] (6.3)

with xi de�ned in as in eq. (6.2).�e second derivative (see Appendix A.1) is

∂2 lµ
∂η2i

= −
(1 − k)

σ2
[k exp(kxi) + exp{(k − 1)xi}] exp(kxi) (6.4)

Functions to calculate the likelihood (LE.mu) and the �rst and second derivatives are also shown
inAppendix B. Each of the latter two functions returns a vectorwhose ith element is either ∂lµ/∂ηi
(DLDE.mu) or ∂2 lµ/∂η2i (D2LDE.mu).

Since we are interested in modelling the mean as a function of covariates, the scale and shape

parameter constitute the parameters of secondary interest ϕ. A function to calculate the value of
these parameters given the data and the current estimate of the ηi is outlined in Appendix B.

6.2 Modelling the Scale

To model the scale parameter, we will use an exponential inverse-link function, i.e.,

σi = exp(x′iβ) = exp(ηi)

and the log-likelihood, which we denote by lσ to denote that the scale is being modelled, is given
by

lσ = −
N

∑
i=1
log σi − (1 − k)

N

∑
i=1

xi −
N

∑
i=1
exp(−xi) (6.5)

where

xi = −
1

k
log [1 − k (

yi − µ
σi

)] and σi = exp(ηi) (6.6)

�e �rst and second derivatives of lσ with respect to ηi are are somewhat messier than the deriva-

tives with respective to µi , and the are derived in Appendix A.2. �e expressions are as follows:

∂lσ
∂ηi

=
∂lσ
∂σi

⋅
∂σi

∂ηi
= −

1

kσi
(Pi + Qi) ⋅

∂σi

∂ηi
(6.7)

where

Pi = 1 − exp(−xi) (6.8)

Qi = exp [(k − 1)xi] − (1 − k) exp(kxi) (6.9)

7

and because σi = exp(ηi), ∂σi/∂ηi = exp(ηi).

�e second derivative can be expressed in terms of quantities that have already been calculated,

i.e.,
∂2 lσ
∂σ 2i

= −
1

σi

∂lσ
∂σi

− [
1

σi
Qi + exp(−xi) ⋅

∂xi
∂σi

]
∂xi
∂σi

(6.10)

where ∂xi/∂σi can be obtained by di�erentiating eq. (6.2) and is shown in eq. (A.2.5).

Functions to calculate the likelihood (LE.sigma) and the �rst (DLDE.sigma) and second (D2LDE)
derivatives are listed in Appendix B. Here, we model the scale parameter as a function of covari-

ates, and so the mean and shape parameters constitute ϕ, the parameters of secondary interest. A
function to calculate the value of these parameters given the data and the current estimate of the

ηi is also outlined in Appendix B.

7 A SIMPLE EXAMPLE

7.1 Data

�e dataset was provided by Mark Palmer. It consists of yearly maximum rainfall amounts be-

tween 1953 and 1991 at a single station and associated mean sea level pressures on a 14 × 11 grid.

A plot of the yearly maxima appears in Fig. 7.1, and there appears to be an upward trend a�er the

mid-1960s.�e locations of the station and the grid points are shown in Fig. 7.2. For the year 1956,

all pressure values are constant (an error!), so it has been removed from the dataset before any

further analyses.�e resulting response vector y (of yearly maxima) is therefore of length 38, and
the matrix of explanatory variables X is of dimension 38 × 154.

Because the objective here is to illustrate how HGenginemight be used to model GEV-distributed
random variables, little in the way of exploratory analysis of the data was carried out. However,

there is not a strong relationship between the yearly maximum rainfall and mean sea-level pres-

sure: the highest squared correlation with rainfall is only about 0.35.

7.2 Invoking RChip

�e version of RChip that is publicly available fromCSIROBioinformatics2 does not containmore
advanced functions such as HGengine, and users will have to obtain more recent ‘beta’ versions.
A�er installing one of these versions, RChip can be invoked by an R statement of the form

> require(RChip, lib.loc = "/home/pha041/src/RChip/RChip_3.0.6")

or something similar. In the analysis below, we will also need to invoke functions that are ordi-

narily hidden from the user; these can be accessed using the double (::) or triple(:::) colon
operators.

2https://www.bioinformatics.csiro.au/GeneRave/index.shtml

8

https://www.bioinformatics.csiro.au/GeneRave/index.shtml

1960 1970 1980 1990

20
40

60
80

Year

m
ax

im
um

 r
ai

nf
al

l (
m

m
)

Figure 7.1. Maximum yearly rainfall in the period 1953–1991 at the station shown in Fig. 7.2.

7.3 Modelling the Mean

Recall from §4 that in addition to the data y and X, HGengine requires additional arguments,
including initial estimates of the coe�cients β and the parameters of secondary interest ϕ. We
obtain the former by using an internal function that calculates a ridge-type estimator:

> initB <- RChip:::HGinit.g(cbind(1, scale(X)), y, lb = 1, weights = 1)
> initB[1:5]

[1] 42.6641026 -7.8255464 -6.2542437 -0.2515796 5.2602418

and the latter by using maximum-likelihood estimates without including any covariates:

> require(ismev)
> y.mle <- gev.fit(y)
> initParam <- y.mle$mle[c(2, 3)]
> initParam[2] <- -initParam[2]

Hence, the initial estimates of the scale and shape parameter k are

> initParam

[1] 15.53336209 0.03168927

�e function gev.fit is part of the package ismev. Here, the elements of initParam are initial
estimates of the scale and shape. Estimation in ismev uses a log-likelihood of the form given in
eq. (5.1), but since we are using eq. (5.3), the estimate of the shape parameter (k) that we require is
the negative of the shape parameter (ξ) in eq. (5.1).

9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

*

Figure 7.2.Map of Eastern Australia showing the location of the station (asterisk) at which yearly
maximum rainfall was calculated, and the 11 × 14 grid points at which the corresponding mean

sea-level pressure was available.

10

bbess # vars bbess # vars

5 × 102 2 1 × 105 13

1 × 103 6 5 × 105 16

5 × 103 8 1 × 106 17

1 × 104 11 5 × 106 16

5 × 104 14 1 × 107 20

Table 7.1. E�ect of increasing bbess on the number of variables selected when the mean is mod-
elled using an identity link.�e value of kbess is held constant at 0.6.

Additional arguments to HGengine include functions to calculate the log-likelihood and its �rst
and second derivatives with respect to the linear predictor. �ese functions are outlined in Ap-

pendix B, and we now have all the pieces to run HGengine and carry out variable selection. �e
syntax is straightforward:

> mu.res <- HGengine(cbind(1, scale(X)), y,
+ Le = LE.mu, DLde = DLDE.mu, D2Lde = D2LDE.mu,
+ HGsc = HGSC.mu,
+ scale = initParam, bhat = initB,
+ bbess = 5e+03, kbess = 0.60)

Note that the matrix of explanatory variables is scaled so that its columns have unit sample vari-

ance and that a columns of ones has been explicitly added for the intercept term.

> nVars <- sum(mu.res$S[-1])
> cat("Number of variables selected:", nVars)

Number of variables selected: 8

> colsX <- (1:ncol(X))[mu.res$S[-1]]
> cat("Columns of X that are selected:", colsX)

Columns of X that are selected: 1 5 30 50 57 110 120 151

For this combination of bbess (= 5 × 103) and kbess (= 0.60), 8 variables, not including the
intercept term, have been chosen, and the column (grid point) numbers are shown above. In

Fig. 7.2, the grid points correspond to column numbers 1–154 arranged from le�-to-right, top-to-

bottom.�e variables that are selected line roughly along a NW-SE line in two clusters, on either

side of the station location. In general, the number of variables selected increases as bbess and
kbess increase. Table 7.1 illustrates this pattern for �xed kbess and increasing bbess, though the
trend is not monotonic. Cross-validation is used to select a bbess/kbess combination, but I have
not carried it out for this illustrative exercise. �e estimate of the mean of the ith observation is
shown in Fig. 7.3: because we are using the identity link, µ̂i = η̂i = x′i β̂, where β̂ contain the
coe�cients estimated by HGengine, of which 146 (= 154 − 8)are zero.

11

1960 1970 1980 1990

20
40

60
80

Year

m
ax

im
um

 r
ai

nf
al

l (
m

m
)

Figure 7.3. Maximum yearly rainfall (black) and the estimate of the mean µ̂i from a sparse re-

gression containing 8 variables (red).

�e object mu.res also contains the �nal estimates of the scale and shape parameter, and it is
instructive to compare them with the estimates obtained earlier when we assumed a constant

mean.

> mu.res$scale

[1] 11.8996201 0.1060878

> c(y.mle$mle[2], -y.mle$mle[3])

[1] 15.53336209 0.03168927

�us, when we �t a conditional mean, the estimate of scale parameter decreases (as we might

expect). �e shape parameter k increases; alternatively, ξ(= −k) decreases. We do not, however,
have expressions for standard errors and so cannot determine whether these changes are signi�-

cant. Although expressions for (approximate) standard errors of the parameters are available for

many L1-normmethods, none exist for the GeneRaVE family and we have to resort to resampling
methods to obtain standard errors.

�e optimization routine (optim) used in the function HGSC.mu to estimate the scale and shape
parameters for a given value of the linear predictor is very sensitive to the optimization method

used internally and its associated parameters. By default, optimuses the simplexmethod ofNelder
and Mead (see, for example, Avriel[9]), which has three adjustable coe�cients, each of which is

associated with one of its three constituent steps: re�ection, expansion, and contraction. When

default values are used, the function fails to converge. For this reason, I had to experiment with

12

di�erent values of the control parameters until the routine converged. As wewill see below, setting

the correct control parameters is even more critical when we try to estimate the mean and shape

for a �xed value of the scale parameter.

7.4 Modelling the Scale

Initial estimates of the coe�cients β and of the parameters of secondary interest ϕ (here, the
location and shape parameter) can be obtained in the same way as before:

> initB <- RChip:::HGinit.g(cbind(1, scale(X)), log(y.mle$mle[2] +
+ runif(y, -4, 4)), lb = 1, weights = 1)

> initParam <- y.mle$mle[c(1, 3)]
> initParam[2] <- -initParam[2]
> initParam

[1] 35.22676331 0.03168927

To obtain the initial estimates initB, I have simply used a ridge-estimator where the response
variable is the log of the unconditional scale parameter plus some noise. �en, to run the func-

tion HGengine as before, we simply use the appropriate functions for the �rst and second deriva-
tives with respect to the linear predictor, and for the function that calculates the parameters of

secondary interest.

> sigma.res <-
+ HGengine(cbind(1, scale(X)), y,
+ Le = LE.sigma,
+ DLde = DLDE.sigma,
+ D2Lde = D2LDE.sigma,
+ HGsc = HGSC.sigma,
+ scale = initParam,
+ bhat = initB,
+ bbess = 5e+03,
+ kbess = 0.45)

> nVars <- sum(sigma.res$S[-1])
> cat("Number of variables selected:", nVars)

Number of variables selected: 2

> colsX <- (1:ncol(X))[sigma.res$S[-1]]
> cat("Columns of X that are selected:", colsX)

Columns of X that are selected: 126 141

�us, for this combination of bbess (= 5× 103) and kbess (= 0.45), only 3 variables are selected,

including the intercept term. In trying di�erent combinations of bbess and kbess, however, I
found that the function HGSC.sigma o�en failed. For example, as Table 7.2 shows (R code to
generate it not shown) for a range of bbess/kbess values, this is the rule rather than the exception.

13

kbess

bbess

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

10 NA 1 1 2 3 NA NA NA NA NA NA NA

50 NA 1 2 3 NA NA NA 9 NA NA NA NA

100 NA 1 2 3 NA NA NA NA NA NA NA NA

500 NA 1 2 NA NA NA NA NA NA NA NA NA

1000 NA 2 2 NA NA 8 NA NA NA NA NA NA

5000 1 2 3 NA NA NA NA NA NA NA NA 103

10000 1 2 NA NA NA NA NA NA NA NA NA 100

50000 1 2 NA NA NA NA NA NA NA NA 65 33

1e+05 1 2 NA NA 9 NA NA NA NA NA 88 NA

5e+05 1 2 NA NA NA NA NA NA NA 69 NA 32

1e+06 1 2 NA NA NA NA NA NA NA 88 NA 35

5e+06 1 2 NA NA NA NA NA NA 42 33 33 34

Table 7.2. Number of variables selected for di�erent bbess/kbess combinations when the scale
parameter is modelled with an exponential inverse-link. Where there is an ‘NA’ entry, the function
HGSC.sigma failed.

Moreover, running the same hyperparameter combination twice does not always result in the

same variables being selected, nor in the same number of variables, and HGSC.sigma sometimes
fails for bbess/kbess combinations that have previously yielded sensible results. Where di�erent
variables are sometimes selected, however, they tend to be at neighbouring grid points.

In the example above, the estimates of the coe�cients are

> sigma.res$beta[sigma.res$S]

[1] 2.6439726 0.2156307 0.2345306

where the �rst element in the vector is the intercept. To assess whether the estimates of β obtained
by HGengine are sensible, we can use the use the variables selected above in a straightforward
regression using the function gev.fit from the library ismev as follows:

> sigma.gevfit <- gev.fit(y, scale(X[, colsX]), siglink = exp,
+ sigl = 1:length(colsX))

> sigma.gevfit$mle

[1] 33.67719186 2.63960154 0.23578169 0.25419606 -0.03661750

�e �rst element is the estimate of themean, the last element is the estimate of the shape parameter

ξ(= −k), and in between are the estimates of the coe�cients in the linear predictor. Comparing
these with the estimates from HGengine, we can see that they are similar, though the latter are
very slightly shrunken. �e estimates of the location and shape parameter are also similar, and

14

1960 1970 1980 1990

10
15

20
25

Year

es
tim

at
e

of
 s

ca
le

 p
ar

am
et

er
 (

m
m

)

20
40

60
80

m
ax

im
um

 r
ai

nf
al

l (
m

m
)

Figure 7.4. Estimates of scale parameter σ̂i from a sparse regression (black). Also shown is the

MLE estimate of the stationary scale parameter (horizontal black line) and the maximum yearly

rainfall (grey).

they are given by

> sigma.res$scale

[1] 33.95157698 0.04389743

Figure 7.4 shows the estimates of the scale parameters σ̂i , and, for reference, the stationary estimate

and the yearly maximum rainfall.

8 DISCUSSION

�e objective here has been to demonstrate ‘proof-in-principle’ use of the function HGengine for
rapid variable selection when the response variable has a GEV distribution. Using HGengine, we
can model either the location or the scale parameter as a function of the linear predictor ηi = x′iβ
using appropriate link functions. Constructing parsimonious models in this way may be useful

in, for example, downscaling applications, where potential explanatory variables include grid-

ded outputs from general circulation models.�ese outputs can include mean sea-level pressure,

geopotential heights, relative humidity, dew-point temperature depression, and many others. In

even amodest-sized grid such as the one used here, the number of potential explanatory variables

p can number in the many hundreds, and even thousands; furthermore, since the length of a se-
ries consisting of block maxima—for example, yearly maximum rainfall—is likely to be relatively

short, N ≪ p, and HGengine provides a rapid and e�cient means of variable selection in circum-

15

stances where conventional methods such as stepwise regression will fail. Of course—keeping

in mind all the caveats about empirical variable selection—we would hope that the variables se-

lected byGeneRaVEmight ultimately lead to a sensible and defensible interpretation of the drivers
of extreme events and behaviour.

�ere are two aspects of using GeneRaVE that need to be explored further, one speci�c and imme-

diate, relating to the speci�c use of HGengine for extremes, the other more general, about variable
selection from gridded spatial data:

1. �e estimation of parameters in HGengine, using the auxiliary functions described in Ap-
pendix B, must be stabilized. When HGengine fails to yield a solution, it does so because
one of the auxiliary functions HGSC.mu or HGSC.sigma, which estimate the parameters ϕ
of secondary interest, has failed. It appears that at some point during the optimization,

the values of the second derivative grow without limit. �e solution may be as simple as

adding a statement to constrain the second derivative, or another optimization method in

the function optimmay be required.

2. In modelling the mean as a function of the linear predictor, eight locations on the grid were

selected, and they were divided into two broad clusters.�e grid points within a cluster are

not in general adjacent to one another, though wemight expect them to be so because of the

smooth underlying spatial �eld. Like its other L1 counterparts, GeneRaVE does not explic-
itly enforce smoothness when the variables are ordered spatially, temporally, or in any other

meaningful way, as in, for example, infrared spectra discretized at many wavelengths.�ere

is, however, a generalization of LASSO, known as the fused LASSO[10], that may suggest a

way forward. In addition to the LASSO constraint ∑
p
j=1 ∣β j∣ ≤ s, the fused LASSO imposes

an additional constraint that encourages sparsity in the di�erences between adjacent coef-

�cients: ∑
p
j=2 ∣β j − β j−1∣ ≤ t. As Tibshirani et al.[10] point out, generalizations of the fused

LASSO to gridded data are also possible, though computationally expensive because the

number of constraints is of the order of p2. It is not immediately clear how to modify the
prior in eq. (2.1) to encourage sparsity in the di�erences of coe�cients one unit apart in any

direction, but that would certainly be an interesting research question!

ACKNOWLEDGMENTS

�anks to Harri Kiiveri for many helpful discussions and much advice on using HGengine and to
Mark Palmer for the extremes data.

16

REFERENCES

[1] Kiiveri, H. (2008). A general approach to simultaneous model �tting and variable elimina-

tion in response models for biological data with many more variables than observations.

BMC Bioinformatics, 9 (1), 195.

[2] Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data anal-

ysis. In Wolfgang Härdle and Bernd Rönz, editors, Compstat 2002—Proceedings in Compu-
tational Statistics, pp. 575–580. Heidelberg: Physica Verlag.

[3] CSIRO Bioinformatics (2008). GeneRaVE. https://www.bioinformatics.csiro.au/
GeneRave/index.shtml.

[4] Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological). 58 (1), 267–288.

[5] Coles, S. (2001).An Introduction to Statistical Modeling of Extreme Values. London:Springer-
Verlag.

[6] Prescott, P. and Walden, A.T. (1980). Maximum likelihood estimation of the parameters of

the generalized extreme value distribution. Biometrika, 67 (3), 723–724.

[7] Stephenson, A. (2006). ismev: An Introduction to Statistical Modeling of extreme values.
Original S functions by Stuart Coles. R port and R documentation by Alec Stephenson. R

package version 1.3. http://www.maths.lancs.ac.uk/~stephena/.

[8] Natural Environment Research Council (Great Britain). (1975). Flood Studies Report, Vol. I,
Hydrological Studies. London: Natural Environment Research Council.

[9] Avriel, M. (1976). Nonlinear Programming: Analysis and Methods. Englewood Cli�s, N.J.:
Prentice-Hall.

[10] Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and smooth-

ness via the fused lasso. Journal of the Royal Statistical Society, Ser. B, 67 (1), 91–108.

17

https://www.bioinformatics.csiro.au/GeneRave/index.shtml
https://www.bioinformatics.csiro.au/GeneRave/index.shtml
http://www.maths.lancs.ac.uk/~stephena/

A DERIVATIVES OF THE GEV LOG-LIKELIHOOD

A.1 Modelling the Mean

When we use an identity link to model the mean (i.e., µi = ηi), the log-likelihood is given in

eqs. (6.1) and (6.2) as

lµ = −N log σ − (1 − k)
N

∑
i=1

xi −
N

∑
i=1
exp(−xi) (A.1.1)

with

xi = −
1

k
log [1 − k (

yi − ηi

σ
)] (Ô⇒ 1 − k (

yi − ηi

σ
) = exp(−kxi)) (A.1.2)

�en,
∂lµ
∂xi

= −(1 − k) + exp(−xi) (A.1.3)

Furthermore, we have that

∂xi
∂ηi

= −
1

k
k
σ
[1 − k (

yi − ηi

σ
)]

−1

= −
1

σ
[exp(−kxi)]

−1

= −
1

σ
exp(kxi) (A.1.4)

where the simpli�cation in going from the �rst to the second step occurs upon rearranging the

expression for xi and inserting the result. Finally, using the chain rule, we can write that

∂lµ
∂ηi

=
∂lµ
∂xi

⋅
∂xi
∂ηi

= [−(1 − k) + exp(−xi)] [−
1

σ
exp(kxi)]

=
(1 − k)

σ
exp(kxi) −

1

σ
exp [(k − 1)xi] (A.1.5)

with xi as above.

To calculate the second derivative, we use the chain rule again, and can write that

∂2 lµ
∂η2i

=
∂
∂xi

(
∂lµ
∂ηi

) ⋅
∂xi
∂ηi

(A.1.6)

Hence,

∂2 lµ
∂η2i

= {
k(1 − k)

σ
exp(kxi) +

(1 − k)
σ

exp [(k − 1)xi]} ⋅ [−
1

σ
exp(kxi)]

= −
(1 − k)

σ 2
exp(kxi) {k exp(kxi) + exp [(k − 1)xi]} (A.1.7)

18

A.2 Modelling the Scale

We use an exponential inverse-link to model the scale parameter (i.e., σi = exp ηi). �en the

log-likelihood, which is given in eqs. (6.5) and (6.6), is

lσ = −
N

∑
i=1
log σi − (1 − k)

N

∑
i=1

xi −
N

∑
i=1
exp(−xi) (A.2.1)

where

xi = −
1

k
log [1 − k (

yi − µ
σi

)] and σi = exp(ηi) (A.2.2)

Furthermore, we can rearrange the equation for xi above to yield an expression that will be useful
below in carrying out further simpli�cations:

k (
yi − µ

σi
) = 1 − exp(−kxi) (A.2.3)

Using the chain rule, we can write that

∂lσ
∂σi

= −
1

σi
− [(1 − k) − exp(−xi)]

∂xi
∂σi

(A.2.4)

Starting with the expression for xi above, we can write that

∂xi
∂σi

= −
1

k
[1 − k (

yi − µ
σi

)]
−1

⋅
∂
∂σi

[1 − k (
yi − µ

σi
)]

= −
1

k
[1 − k (

yi − µ
σi

)]
−1 1

σ
k (

yi − µ
σ

)

= −
1

kσi
exp(kxi) [1 − exp(−kxi)]

= −
1

kσi
[exp(kxi) − 1] (A.2.5)

where eq. (A.2.3) has been used to arrive at the last expression.�en,

∂lσ
∂σi

= −
1

σi
+
1

kσi
[exp(kxi) − 1] [(1 − k) − exp(−xi)]

⋮

= −
1

kσi
(Pi + Qi) (A.2.6)

where

Pi = 1 − exp(−xi) and (A.2.7)

Qi = exp [(k − 1)xi] − (1 − k) exp(kxi) (A.2.8)

19

which is in the same form as that given in the NERC Flood Studies Report[8, p. 93]. Because we
are using an exponential link, ∂σi/∂ηi = exp(ηi), the derivative of the log-likelihood with respect

to ηi is given by

∂lσ
∂ηi

=
∂lσ
∂σi

⋅
∂σi

∂ηi
= −

1

k exp(ηi)
(Pi + Qi) exp(ηi) (A.2.9)

where σi is replaced by exp(ηi) where it appears in Pi and Qi .

�e second derivative is somewhat messier, so let’s proceed as follows to facilitate writing an R

function. Using the chain rule, we can write that

∂2 lσ
∂η2i

=
∂lσ
∂σi

⋅
∂σ 2i
∂η2i

+
∂2 lσ
∂σ2i

⋅ (
∂σi

∂ηi
)

2

(A.2.10)

�e exponential inverse-link means that its derivatives are simple; furthermore, we have already

derived an expression for ∂lσ/∂σi , so we need only calculate ∂2 lσ/∂σ2i . Using the notation of
eqs. (A.2.6), (A.2.7), and (A.2.8), and the chain rule,

∂2 lσ
∂σ2i

= (Pi + Qi) ⋅
∂
∂σi

(−
1

kσi
) −

1

kσi
⋅
∂
∂σi

(Pi + Qi)

=
1

σi
⋅
1

kσi
(Pi + Qi) −

1

kσi

∂
∂xi

[1 − exp(−xi) + exp [(k − 1)xi] − (1 − k) exp(kxi)] ⋅
∂xi
∂σi

= −
1

σi

∂lσ
∂σi

−

1

kσi
[exp(−xi) + (k − 1) exp [(k − 1)xi] − k(1 − k) exp(kxi)] ⋅

∂xi
∂σi

= ⋮

= −
1

σi

∂lσ
∂σi

− [
1

σi
Qi + exp(−xi) ⋅

∂xi
∂σi

]
∂xi
∂σi

(A.2.11)

Eq. (A.2.11) expresses the second derivative of the log-likelihood with respect to the scale in terms

of quantities thatwill have already been calculated to obtain the �rst derivative, and so it is straight-

forward to implement. Once we have calculated ∂2 lµ/∂σ2i we simply substitute it into eq. (A.2.10)
along with the other quantities to obtain ∂2 lµ/∂η2i .

20

B AUXILIARY R FUNCTIONS FOR IMPLEMENTING HGENGINE

�e functions outlined here have been written quickly to illustrate the use of HGengine.�ey are
prototypes only, and so are neither completely general nor particularly elegant! I have written two

separate sets of functions, one for use when modelling the mean, the other when modelling the

scale parameter.

B.1 Modelling the Mean

B.1.1 LE.mu

> # This is the function that is assigned to the argument 'Le' in the
> # function 'HGengine'. It is basically a wrapper for the function
> # 'GEV.lik.mu_eta'.
> `LE.mu` <- function(eta, data, events, weights, nuisparam)
+ {
+ Sigma <- nuisparam[1]
+ K <- nuisparam[2]
+ z <- GEV.lik.mu_eta(data, eta, Sigma, K)
+ z
+ }

B.1.2 GEV.lik.mu_eta

> # Calculates the log likelihood as a function of the linear predictor
> # eta when the mean is modelled as a function of eta. Note that
> # eta can be either a vector or a scalar here.
> `GEV.lik.mu_eta` <-
+ function(x, eta, sigma, k, muFUN = "I"){
+ muFUN <- match.fun(muFUN)
+ mu <- muFUN(eta)
+ N <- length(x)
+ y <- 1 - k * (x - mu)/sigma
+ if(any(y <= 0) || any(sigma <= 0))
+ return(-1e+06)
+ y <- -(1/k) * log(y)
+ # It's unlikely that BOTH mu and sigma will be vectors so we could
+ # get rid of the condition below:
+ if(length(sigma) == 1)
+ z <- -(N * log(sigma) + (1 - k) * sum(y) + sum(exp(-y)))
+ else z <- -(sum(log(sigma)) + (1 - k) * sum(y) + sum(exp(-y)))
+ attributes(z) <- NULL

21

+ z
+ }

B.1.3 HGSC.mu

> HGSC.mu <- function(eta, data, event,
+ weights, scale, ...) {
+ gev.lik.eta <- function(z, dat,
+ Eta) {
+ Sigma <- z[1]
+ K <- z[2]
+ eta <- Eta
+ x <- dat
+ z <- GEV.lik.mu_eta(x, eta,
+ Sigma, k = K)
+ z
+ }
+ init <- scale
+ res <- optim(init, gev.lik.eta,
+ dat = data, Eta = eta, control = list(fnscale = -1,
+ alpha = 0.25, beta = 0.5,
+ gamma = 1.1))
+ res$par
+ }

B.1.4 DLDE.mu

> # This is the function that is assigned to the argument 'DLde' in the
> # function 'HGengine'. It is a wrapper for 'dGEV.lik.dmu_eta'.
> `DLDE.mu` <- function(eta, data, events, weights, nuisparam)
+ {
+ Sigma <- nuisparam[1]
+ K <- nuisparam[2]
+ z <- dGEV.lik.dmu_eta(data, eta, Sigma, K)
+ z
+ }

B.1.5 dGEV.lik.dmu_eta

> # This function calculates dl/deta; for the identity link, dl/deta and
> # dl/dmu are identical, but not in general. If the link is not the

22

> # identity link, the user will have to specify dmu.deta.FUN here.
> `dGEV.lik.dmu_eta` <- function(x, eta, sigma, k,
+ muFUN = "I",
+ dmu.deta.FUN = function(x){1}){
+ muFUN <- match.fun(muFUN)
+ dmu.deta.FUN = match.fun(dmu.deta.FUN)
+ mu <- muFUN(eta)
+ z <- dGEV.lik.dmu(x, mu, sigma, k) * dmu.deta.FUN(eta)
+ z
+ }

B.1.6 dGEV.lik.dmu

> # Function to calculate dl/dmu
> `dGEV.lik.dmu` <- function(x, mu, sigma, k){
+ y <- 1 - k * (x - mu)/sigma
+ #
+ if(any(y <= 0) || any(sigma <= 0))
+ return(-1e+06)
+ #
+ y <- -(1/k) * log(y)
+ Q <- exp((k - 1) * y) - (1 - k) * exp(k * y)
+ z <- -Q/sigma
+ attributes(z) <- NULL
+ z
+ }

B.1.7 D2LDE.mu

> # This is the function that is assigned to the argument 'D2Lde' in the
> # function 'HGengine'. It is a wrapper for 'd2GEV.lik.dmu_eta2'.
> `D2LDE.mu` <- function(eta, data, events, weights, nuisparam)
+ {
+ Sigma <- nuisparam[1]
+ K <- nuisparam[2]
+ z <- d2GEV.lik.dmu_eta2(data, eta, Sigma, K)
+ z
+ }

23

B.1.8 d2GEV.lik.dmu_eta2

> # Calculates the second derivative of the log-likelihood with respect
> # to eta. The derivatives of the inverse-link function have to be
> # entered here manually. This also calls functions for the first and
> # second derivatives of the log-likelihood with respect to mu.
> `d2GEV.lik.dmu_eta2` <-
+ function(x, eta, sigma, k,
+ dl.dmu.FUN = "dGEV.lik.dmu",
+ d2l.dmu2.FUN = "d2GEV.lik.dmu2",
+ muFUN = "I",
+ dmu.deta.FUN = function(x){1},
+ d2mu.deta2.FUN = function(x){0})
+ {
+ dl.dmu.FUN <- match.fun(dl.dmu.FUN)
+ d2l.dmu2.FUN <- match.fun(d2l.dmu2.FUN)
+ muFUN = match.fun(muFUN)
+ dmu.deta.FUN <- match.fun(dmu.deta.FUN)
+ d2mu.deta2.FUN <- match.fun(d2mu.deta2.FUN)
+
+ mu <- muFUN(eta)
+ z <- dl.dmu.FUN(x, mu, sigma, k) * d2mu.deta2.FUN(eta) +
+ d2l.dmu2.FUN(x, mu, sigma, k) * (dmu.deta.FUN(eta))^2
+ attributes(z) <- NULL
+ z
+ }

B.1.9 d2GEV.lik.dmu2

> # This calculates the second derivative of the GEV log likelihood wrt
> # mu. It requires a vector (mu) of mean values.
> `d2GEV.lik.dmu2` <-
+ function(x, mu, sigma, k){
+ y <- 1 - k * (x - mu)/sigma
+ #
+ if(any(y <= 0) || any(sigma <= 0))
+ return(-1e+06)
+ #
+ y <- -(1/k) * log(y)
+ z <- k * exp(k * y) + exp((k - 1) * y)
+ z <- -z * (1 - k) * exp(k * y)/(sigma^2)
+ attributes(z) <- NULL

24

+ z
+ }

B.2 Modelling the Scale

�e functions listed here follow the same pattern as those written when modelling the mean, so

this subsection provides only listings with few comments.

B.2.1 LE.sigma

> `LE.sigma` <- function(eta, data, events, weights, nuisparam)
+ {
+ Mu <- nuisparam[1]
+ K <- nuisparam[2]
+ z <- GEV.lik.sigma_eta(data, Mu, eta, K)
+ z
+ }

B.2.2 GEV.lik.sigma_eta

> `GEV.lik.sigma_eta` <-
+ function(x, mu, eta, k, sigmaFUN = "exp"){
+ sigmaFUN <- match.fun(sigmaFUN)
+ sigma <- sigmaFUN(eta)
+ N <- length(x)
+ y <- 1 - k * (x - mu)/sigma
+ if(any(y <= 0) || any(sigma <= 0))
+ return(-1e+06)
+ y <- -(1/k) * log(y)
+ if(length(sigma) == 1)
+ z <- -(N * log(sigma) + (1 - k) * sum(y) + sum(exp(-y)))
+ else z <- -(sum(log(sigma)) + (1 - k) * sum(y) + sum(exp(-y)))
+ attributes(z) <- NULL
+ z
+ }

B.2.3 HGSC.sigma

> `HGSC.sigma` <- function(eta, data, event, weights, scale, ...)
+ {
+ gev.lik.eta <- function(z, dat, Eta)

25

+ {
+ Mu <- z[1]
+ K <- z[2]
+ eta <- Eta
+ x <- dat
+ z <- GEV.lik.sigma_eta(x, Mu, eta, k = K)
+ z
+ }
+
+ #in2 <- sqrt(6 * var(data))/pi
+ #in1 <- mean(data) - 0.57722 * in2
+ #init <- c(in1, 0.1)
+ init <- scale
+ #cat("initial values are", init, "\n")
+
+ res <- optim(init, gev.lik.eta, dat = data, Eta = eta,
+ control = list(fnscale = -1))
+ #alpha = 0.25, beta = 0.5, gamma = 1.1))
+ res$par
+ }

B.2.4 DLDE.sigma

> `DLDE.sigma` <- function(eta, data, events, weights, nuisparam)
+ {
+ Mu <- nuisparam[1]
+ K <- nuisparam[2]
+ z <- dGEV.lik.dsigma_eta(data, Mu, eta, K)
+ z
+ }

B.2.5 dGEV.lik.dsigma_eta

> `dGEV.lik.dsigma_eta` <- function(x, mu, eta, k,
+ sigmaFUN = "exp",
+ dsig.deta.FUN = "exp"){
+ sigmaFUN <- match.fun(sigmaFUN)
+ dsig.deta.FUN = match.fun(dsig.deta.FUN)
+ sigma <- sigmaFUN(eta)
+ z <- dGEV.lik.dsigma(x, mu, sigma, k) * dsig.deta.FUN(eta)
+ z
+ }

26

B.2.6 dGEV.lik.dsigma

> `dGEV.lik.dsigma` <- function(x, mu, sigma, k){
+ ## This and calculates the derivative of the GEV log likelihood wrt
+ ## sigma. NB This requires a *vector* (sigma) of scale values for
+ ## each observation, and it returns a vector of individual log
+ ## likelihood values. For example, if all the values in sigma are
+ ## the same, summing the result gives the value of the derivative
+ ## calculated as if sigma were a constant scalar.
+ y <- 1 - k * (x - mu)/sigma
+ #
+ if(any(y <= 0) || any(sigma <= 0))
+ return(-1e+06)
+ #
+ y <- -(1/k) * log(y)
+ P <- 1 - exp(-y)
+ Q <- exp((k - 1) * y) - (1 - k) * exp(k * y)
+ z <- -(P + Q)/(sigma * k)
+ attributes(z) <- NULL
+ z
+ }

B.2.7 D2LDE.sigma

> `D2LDE.sigma` <- function(eta, data, events, weights, nuisparam)
+ {
+ Mu <- nuisparam[1]
+ K <- nuisparam[2]
+ z <- d2GEV.lik.dsigma_eta2(data, Mu, eta, K)
+ z
+ }

B.2.8 d2GEV.lik.dsigma_eta2

> `d2GEV.lik.dsigma_eta2` <-
+ function(x, mu, eta, k,
+ dl.dsigma.FUN = "dGEV.lik.dsigma",
+ d2l.dsigma2.FUN = "d2GEV.lik.dsigma2",
+ sigmaFUN = "exp",
+ dsig.deta.FUN = "exp",
+ d2sig.deta2.FUN = "exp"){
+ dl.dsigma.FUN <- match.fun(dl.dsigma.FUN)

27

+ d2l.dsigma2.FUN <- match.fun(d2l.dsigma2.FUN)
+ sigmaFUN = match.fun(sigmaFUN)
+ dsig.deta.FUN <- match.fun(dsig.deta.FUN)
+ d2sig.deta2.FUN <- match.fun(d2sig.deta2.FUN)
+
+ sigma <- sigmaFUN(eta)
+ z <- dl.dsigma.FUN(x, mu, sigma, k) * d2sig.deta2.FUN(eta) +
+ d2l.dsigma2.FUN(x, mu, sigma, k) * (dsig.deta.FUN(eta))^2
+ attributes(z) <- NULL
+ z
+ }

B.2.9 d2GEV.lik.dsigma2

> `d2GEV.lik.dsigma2` <-
+ function(x, mu, sigma, k){
+ ## This and calculates the second derivative of the GEV log
+ ## likelihood wrt sigma. As above, this requires a vector (sigma)
+ ## of scale values.
+ y <- 1 - k * (x - mu)/sigma
+ #
+ if(any(y <= 0) || any(sigma <= 0))
+ return(-1e+06)
+ #
+ y <- -(1/k) * log(y)
+ z <- exp(-y) + (k - 1) * exp((k - 1) * y) -
+ k * (1 - k) * exp(k * y)
+ z <- z * (exp(k * y) - 1)/(sigma * k)^2 -
+ dGEV.lik.dsigma(x, mu, sigma, k)/sigma
+ attributes(z) <- NULL
+ z
+ }

28

	1 Purpose
	2 GeneRaVE
	3 RChip Library
	4 HGengine
	5 Generalized Extreme Value Distribution
	6 Sparse Variable Selection for the GEV distribution
	6.1 Modelling the Mean
	6.2 Modelling the Scale

	7 A Simple Example
	7.1 Data
	7.2 Invoking RChip
	7.3 Modelling the Mean
	7.4 Modelling the Scale

	8 Discussion
	A Derivatives of the GEV Log-likelihood
	A.1 Modelling the Mean
	A.2 Modelling the Scale

	B Auxiliary R Functions for Implementing HGengine
	B.1 Modelling the Mean
	B.2 Modelling the Scale

