
Correcting reads with Blue (v1.1.0)

Blue is written in C#. This means that it will run natively on Windows, and can run under mono on Linux
systems. Mono comes pre-installed on many Linux distributions, but can be downloaded from
http://www.go-mono.com/mono-downloads/download.html and installed manually. Blue doesn’t use
any of the very latest C# language features so it should be compatible with almost all current
mono/Linux distributions. The following commands and examples are for running Blue and its related
tools on Linux, and on Windows the ‘mono’ should be dropped (and the ‘.exe’ is optional).

Tessel

Blue works by correcting reads using a k-mer consensus table (a set of k-mers and counts), and
optionally a set of k-mer pairs. The set of kmers+counts is generated by running Tessel.

mono Tessel.exe -k k-merLength -g genomeLength [-t #threads]

 [-f fasta|fastq] [-tmp tempDir] [-m minDepth]
 [-s] [-canonical|asread] [-text textFN]

 [-textFormat pairs|sum|faPairs|faSum]

 cbtName readsPattern or list of reads files

-k kmerLength is the k-mer length to be used (normally 25 but it can be anything up to 32.

Do not use k values less than 20 as Blue needs a fair degree of k-mer
uniqueness).

-g genomeSize: is a guess at the size of the final (assembled) genome or genomes in the
sample. This is used for the initial sizing of some arrays and any rough guess
will probably be OK. ‘-genome’ can also be used for this option.

-t noOfThreads is how many parallel threads to use for the tiling. This parameter is
optional and 1 thread will be used by default. Tessel scales well with the
number of threads, up to the point where it is limited by reading and
writing the files. ‘-threads’ can also be used for this option.

-f reads format fasta or fastq. This parameter is optional and the file format will normally
be determined by looking inside the first of the reads files. ‘-format’ can
also be used for this option.

-tmp tempDir is an optional parameter that names a directory used for the temporary k-
mer singleton files. I added this parameter so I could place these files on a
different disk and reduce the impact of the temp file writes on reading the
sequence files. It should only be used if you have a physically separate disk
drive to use for these temp files, and faster local disk is much better than
slower or remote storage.

-m minDepth is an optional parameter that specifies the minimum depth needed before
a k-mer (and its count) will be written to the output .cbt file. The default
value for this parameter is 1, so all k-mers will be written out, regardless of
how many times they appear in the reads files. ‘-min’ can also be used for
this option. This option is used to discard k-mers that come from
sequencing errors, and will be discarded by Blue anyway when the k-mers
are loaded into its tables.

-s Recursively search directories when looking for sequence data files.

-canonical (default) regard a k-mer and its reverse complement as equivalent.
Separate counts are maintained for both forms of each k-mer.

http://www.go-mono.com/mono-downloads/download.html

-asread k-mers are saved in the form that they are found, and not converted into a
canonical form. This option is intended only for use on contigs/genomes.

-text textFN tells Tessel to write out the final k-mers and their counts to a text file.
Tessel will also always write out the k-mer and counts in binary format (a
.cbt or .abt file). The format of the text file is specified by the -textFormat
option

-textFormat Specifies the format used when writing k-mers+counts to the text file. . The
‘sum’ and ‘faSum’ options are compatible with Jellyfish text file formats.

 pairs one line per k-mer: k-mer (tab) count (tab) rc-count (default)

 sum one line per k-mer: k-mer (tab) summed-count

 faPairs FASTA file. Header is >count rcCount. Sequence line is k-mer.

 faSum FASTA file. Header is >summed-count. Sequence line is k-mer.

cbtName is used to construct the output file names. The k-mer consensus will be
written to cbtName_kmerLength.cbt (e.g. Cspor_25.cbt) and the k-mer
repetition depth histogram will be saved as cbtName_kmerLength_histo.txt
(e.g. Cspor_25_histo.txt). If this parameter is simply a name, such as
‘Cspor’, then the output files will be placed in the current directory. If it is a
full file name or path, such as ‘Healed/Cspor’, then these files will be
written to this directory. If the ‘-asread’ option is used, a ‘.abt’ file suffix is
used instead of ‘.cbt’.

reads pattern|FNs these parameters specify the set of files to be tiled into k-mers. You either
supply a list of space separated files names or a filename pattern. On
Windows you would normally use a pattern and let Tessel turn it into a set
of matching file names. On Linux, the same pattern will normally be turned
into a list of file names by the shell, with equivalent results.

Example:

mono Tessel.exe -k 25 -g 6000000 -t 4 Cspor s_1_?_sequence.fastq

mono Tessel.exe -k 25 -g 6000000 -t 4 Healed/Cspor s_1_?_sequence.fastq

GenerateMerPairs

Blue can also take a ‘pairs’ file (‘.prs’). These are pairs of short k-mers separated by a small gap, and
effectively extend the view of the correction algorithm further than a single k-mer. then you can use
GenerateMerPairs will take a set of reads, and a .cbt file (from tessel) and produce a pairs file with the
same name as the .cbt file (except with ‘.cbt’ replaced by ‘.prs’)

Pairs should only be generated (and used) if there is enough depth of coverage in the sequence data. Do
not use a pairs file if there is not approximately one pair for each base in the expected ‘genome’. For
example, for a read set corresponding to 6Mbp bacterial genome, you should be looking for at least 6M
pairs. If there are fewer pairs than this, just delete the pairs file and Blue will do a better job of
correcting the reads. The first of the numbers from the run statistics will tell you how much coverage
you have: ‘wrote 5475432/124412923 pairs’ means that GenerateMerPairs saw 5475432 unique pairs,
and so your genome is probably about this length (actually a bit smaller).

mono GenerateMerPairs.exe [-t #threads] [-m minDepth]

 cbtFN readsPattern or list of reads files

-t noOfThreads is how many parallel threads to use when generating the pairs. This
parameter is optional and 1 thread will be used by default. Currently
around 6-8 is enough if you have that many processors available.
‘-threads’ can also be used for this option.

-m minDepth is an optional parameter that specifies the minimum depth needed before
a k-mer (and its count) will be loaded into the k-mers table, and also the
minimum depth needed for a k-mer within a pair. The default value for this
parameter is 3. Use of this parameter can reduce the amount of memory
needed by GenerateMerPairs. Setting the –min option for Tessel will have
similar effects. ‘-min’ can also be used for this option.

cbtFN is the name of the .cbt file produced by Tessel from the set of reads
specified by the next parameter.

reads pattern|FNs: is a set of reads files, either a pattern or a list of file names.

Example:

mono GenerateMerPairs.exe –t 8 –m 10 Cspor_25.cbt s_1_?_sequence.fastq
mono GenerateMerPairs.exe –t 8 –m 10 Healed/Cspor_25.cbt s_1_?_sequence.fastq

Blue

Once you have a k-mer consensus file (.cbt), and optionally the set of corresponding k-mer pairs (.prs), you
can go ahead and correct your reads using Blue.

mono Blue.exe [-help] [-r run] [-stats statsFN]-m minReps [-f fasta|fastq]

 [-hp] [-good %] [-t threads] [-o outputDir] [-fixed] [-variable]

 [-paired] [-unpaired]cbtFN readsPattern or list of reads files

-r runName is the name of this healing run. It is inserted into the names of each of the
reads files to produce the name of the corresponding file of corrected reads.
For example, the corrected form of ‘ERR022075_1.fastq’ will be
‘ERR022075_1_runName.fastq’. This parameter is optional, and its default
value is ‘corrected_minReps’. ‘-run’ can also be used for this option.

-s statsFN is the name of the file used to save the statistics from this run of Blue. This
parameter is optional and by default Blue will generate a statistics file from
the first reads file name parameter and the runName.

-m minReps is a k-mer repetition depth used (at times) to distinguish between ‘good’ and
‘bad’ k-mers. In general, this should be set to somewhere in the dip between
the LHS error spike and the start of the Poisson curve derived from the good
reads (more on this later). This value isn’t very critical as the good/poor/bad
depths are calculated dynamically for all reads if they contain any ‘good’ k-
mers at all.

-f reads format fasta or fastq. This parameter is optional and the file format will normally be
determined by looking inside the first of the reads files. ‘-format’ can also be
used for this option.

 -hp The -hp option sets a flag that is checked when Blue is scanning along a read
trying to find errors that could be corrected. There are a number of tests done
at every base position, all based on depth of coverage. These tests will pick up
random indel errors, but indels are so common at the end of homopolymer
runs in 454 and IonTorrent data that multiple hp run lengths all look to be OK
as well. For example, if our genome had AAAAAA then with Illumina data this
is what we'd see almost all the time, with very rare indels at the end of the hp
run resulting in runs of 5 or 7 As. With 454-like data, we'd probably get 5 As as
frequently as 6 As so depth of coverage would say that neither of them are
errors. The -hp flag causes Blue to look for the end of hp runs and forces an
attempt at correction at that point, regardless of depth of coverage.

 -g %k-mers tells Blue to only save reads that look to be ‘good’ after correction. The ‘%k-
mers’ value specifies how many of the k-mers in a corrected read have to be
above the ‘good’ threshold. Rejected reads are written to ‘problems’ files. Blue
maintains the pairedness of its input files, and if one read of a pair fails the
‘good’ test, both the failing read and its pair will be dropped and written to the
‘problems’ file rather than the corrected reads files. This parameter is
optional, and by default Blue will write all corrected reads to the output files.
‘-good’ can also be used for this option.

-t noOfThreads is how many parallel threads to use for the tiling. This parameter is optional
and 1 thread will be used by default. Blue scales well with the number of
threads, but will eventually be limited by the time needed to read and write
the sequence files. There is also some per-thread memory allocations, so using

more threads will also use more memory. ‘-threads’ can also be used for this
option.

-o outputDir specifies the output directory where Blue will write all its files, including the
corrected reads. By default, these files are written to the directory where the
reads were found. ‘-output’ can also be used for this option.

-fixed read lengths are maintained by padding and trimming. Padding is done by
adding bases if there is no doubt as to what bases come next, and Ns in all
other cases. This is the default behavior.

-variable read lengths are allowed to change during correction as a result of insertions
and deletions.

-paired if Blue is asked to correct a set of reads, it will treat them as a set and maintain
strict pairing between the reads written to each of the output files. If the good
option is used, then Blue will discard a complete set of reads if any one of
them fails the goodness test. This is the default option.

-unpaired tells Blue not to treat a set of reads as a mate set. The main use of this option
is with the –good option as it allows a set of files to be corrected in a single run
of Blue, without having good reads from one file discarded because the
corresponding (but unrelated)

cbtFN is the name of the k-mer tiles file to be used (produced by Tessel). Blue will
also look for a .prs file with same name and use it if it finds it.

reads pattern|FNs these parameters specify the set of files to be tiled into k-mers. You either
supply a list of space separated files names or a filename pattern. On Windows
you would normally use a pattern and let Tessel turn it into a set of matching
file names. On Linux, the same pattern will normally be turned into a list of file
names by the shell, with equivalent results.

Examples:

mono Blue.exe -m 50 -t 8 Cspor_25.cbt s_1_?_sequence.fastq

mono Blue.exe –r g80 -m 50 -t 8 –g 80 –o Healed

 Healed/Cspor_25.cbt s_1_?_sequence.fastq

Setting the minReps parameter

Blue scans along each read, detecting broken k-mers by looking up their repetition depth in the k-mer
consensus table produced by Tessel. Figure 1 shows the types of depths encountered along a real 454 read
containing a few errors (blue line). The red line shows the depth of coverage for the read after correction.
Blue examines each read and calculates two depths – an OK level for the read around 70-80 in this case;
and a depth that indicates an error, around 20 here. This depth calculation can only be done if there are
enough good k-mers in the read, and if there are not, Blue will use the average depth from the entire
consensus to set the OK level, and the value specified for minReps for the error threshold.

The normal way to set the minReps parameter is to use the repetition depth histogram generated by
Tessel. Figure 2 shows the histogram produced from tiling 16,000,000 Illumina GAII reads for a 5Mbp
organism. The Poisson-like curve represents the k-mers actually found in the genome of the organism being
sequenced, and a minReps value of around 50 to 70 would be suitable for this dataset.

Figure 2: k-mer depth histogram

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

0 50 100 150 200 250 300 350

%
 o

f
al

l 2
5

-m
e

rs

25-mer repetition depth

Clostridium sporogenes PA3679 Reads

0

20

40

60

80

100

120

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

Original

Healed

Figure 1: k-mer depths along a read

The curve shown in Figure 2 comes from a pure microbial sample – the simplest case. For diploid
organisms, there will often be two peaks, one representing homozygous k-mers, and the other
heterozygous k-mers. The same procedure for choosing a minReps value applies though, just find
somewhere in the valley between the error k-mer spike (around 1-2) and the first peak. For metagenomic
datasets, there will typically be one or more peaks corresponding to the dominant organisms in the
community, so just choose a minReps value somewhere on the left, and away from any peaks that may
represent organisms of interest.

Notes on Mono

Current releases of Mono support both the older Boehm memory manager (‘garbage collector’) and the
newer SGen engine. Using SGen is recommended if it is supported in by your Mono release. You can do this
by either running ‘mono-sgen’ (instead of ‘mono’), or using the ‘—gc=sgen’ option with ‘mono’. The SGen
garbage collector supports larger memory allocations, essential if you are correcting large files of reads.
Blue (with SGen) has been used to correct 1.7B Illumina HiSeq reads (4 lanes), using about 80GB of memory
without a ‘pairs’ table, and about 130GB with ‘pairs’. This was done using Mono 2.10.8.1. The Boehm
garbage collector is prone to asking to be recompiled when handling large memory allocations (and big
sequence data files).

More details on running Mono can be found at http://docs.go-mono.com/?link=man%3amono(1).

